
One-point velocity statistics in decaying homogeneous isotropic turbulence

Iwao Hosokawa
2-24-6-101 Honmachi, Fuchu, Tokyo 183-0027, Japan

�Received 16 July 2008; revised manuscript received 2 November 2008; published 22 December 2008�

A reasonable closure of the Monin-Lundgren hierarchy of equations for many-point probability density
functions of velocity for decaying homogeneous isotropic turbulence is achieved to treat the first equation for
the one-point velocity distribution. As a result, we are naturally led to a two-parameter family of solutions for
the distribution, which are Gaussian.
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I. INTRODUCTION

The so-called Monin-Lundgren �ML� hierarchy of equa-
tions for many-point probability density functions �PDF� of
velocity in wall-free incompressible turbulence was pre-
sented in 1967 independently by Monin �1� and Lundgren
�2�. It looked simpler but less perfect than the other statistical
�functional� formalism of turbulence by Hopf �3�. But it was
recently proved �4� that these two statistical formalisms are
mathematically equivalent if the hierarchy continues up to
infinity. Both formalisms have looked mathematically so for-
midable to treat that few people have been much interested
in them. In this context, it may be noted that Lewis and
Kraichnan �5� reconstituted the Hopf formalism extensively
using solenoidal velocity field with the space-time argument,
and Hosokawa �6� further generalized this so as to treat ar-
bitrary stochastic fields with the space-time argument and
introduced a technique of functional integration to give a
�formal� general solution of the functional basic equation;
next based on this formalism, statistical hydromechanics
with general random-force action was formulated in �7�, in-
cluding the Novikov equation �8� as a special case. The Hopf
functional, too, embraces in itself the equations for all veloc-
ity correlation tensors chained to make an infinite hierarchy.
Many kinds of �low-order� closure approach to this hierarchy
have been hitherto tried mostly to analyze homogeneous iso-
tropic turbulence, in particular, in an attempt to derive the
energy spectrum of Kolmogorov and the Kolmogorov con-
stant. But they are not touched here but well summarized, for
example, in the book of McComb �9�, who categorized some
of them as renormalized perturbation theory. The one-point
velocity statistics, however, has never been a target from this
research sight.

Recently, however, the author found that, if the coinci-
dence condition and Kolmogorov’s formulas of variance of
velocity difference between two points �for the viscous
range� are combined in a reasonable way in the viscous term
of the first equation in the Monin-Lundgren hierarchy, the
two-point PDF therein can be transformed to the one-point
PDF times a certain factor so that the first equation may be
closed under the condition of homogeneity. Fortunately, the
resulting equation is easy to solve. The result gives a two-
parameter family of Gaussian similarity solutions �including
the power law of energy decay�, which gives an answer to
the deep question of why the one-point PDF of velocity is so
close to Gaussian in decaying isotropic turbulence, since
Batchelor �10�. The present process for this issue does not

need an appeal to the central limit theorem, nor to a particu-
lar mechanism of random force action.

However, after the theoretical research for the sub-
Gaussianity of the one-point PDF in forced turbulence by
Falkovich and Lebedev �11� about a decade ago, people may
tend to believe that the tails of the one-point PDF in every
turbulence decreases more rapidly than Gaussian. Their
theory is heavily based on forcing action �and even the de-
gree of sub-Gaussianity depends on a particular form of the
PDF of random force�, while the present Monin-Lundgren
hierarchy has no such forcing term. There were some experi-
ments and direct numerical simulations �DNSs� to support
the sub-Gaussianity, but all of them treated stationary forced
isotropic turbulence, to the author’s knowledge. In contrast,
the experiment by Makita �12� that treats the decaying ho-
mogeneous turbulence behind an active grid �achieving
Taylor-scale Reynolds number R��387� is unlikely to evi-
dence such a sub-Gaussianity. The DNSs by Yamamoto and
Kambe �13� and Oide, Hosokawa, and Yamamoto �14� which
deal with decaying isotropic turbulence at R��100 and 160,
respectively, do not indicate such an apparent deviation from
Gaussianity, either, as that by Vincent and Meneguzzi �15�
who treated forced turbulence at R��150. In view of these
facts, it still looks too early to extend the sub-Gaussianity
argument upon every isotropic turbulence. Jun et al.’s experi-
ment �16� which treated both forced and decaying two-
dimensional turbulence shows even a super-Gaussianity in
the PDF tails for the latter case, although this case must be
largely affected by the restriction peculiar to two-
dimensionality. Anyhow, it is natural to think that there may
be a delicate but fundamental difference in the one-point
PDF of velocity �or large-scale nature of velocity field� be-
tween forced turbulence and decaying turbulence, because
the one is always randomly disturbed by energy supply into
fixed large-scale components of velocity field to sustain a
stationary state while the other is not so but just decays keep-
ing an autonomous energy-cascading turbulent structure.

In Sec. II, the first equation of the hierarchy is shown, in
which the one-and two-point PDFs of velociy are involved
consistently with the Navier-Stokes equation for incompress-
ible flow. There we shall see how simple it is if the condi-
tions of homogeniety and isotropy are taken into account. In
Sec. III a special consideration of the coincidence condition
and Kolmogorov’s formula of variance of velocity difference
between two points �for the viscous range� will play a deci-
sive role of reducing the two-point PDF left in the equation
to the one-point PDF times an unknown factor which in-
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volves the time-dependent dissipation function. Hence we
have formally a closed partial differential equation for the
one-point PDF, the solution of which is shown in Sec. IV to
be generally Gaussian, whatever form the dissipation func-
tion may take. It is out of scope here to pursue all possible
forms of the dissipation function, but for a two-parameter
family of exact solutions which are found in Sec. V. So it is
clarified that with these solutions, the Monin-Lundgren hier-
archy is truncated at the first equation, and the two param-
eters can characterize the total hierearchy of equations.

II. THE MONIN-LUNDGREN HIERARCHY
FOR HOMOGENEOUS TURBULENCE

We write the s-point PDF of velocity as
Fs�v1 , . . . ,vs ,r1 , . . . ,rs , t�, where v is the velocity vector of
the flow at the position r and t is the time variable. Then the
Monin-Lundgren hierarchy for a wall-free incompressible
turbulence may be written as

�Fs

�t
= − �

i=1

s

vi ·
�Fs

�ri

+ �
i=1

s
�

�vi
· � 1

4�
� � �

�ri

1

	ri − rs+1	 
vs+1 ·
�

�rs+1
�2

� Fs+1dvs+1drs+1

− lim
rs+1→ri

�
 �

�rs+1
·

�

�rs+1
� � vs+1Fs+1dvs+1� �1�

for s�1 �4�. � is the kinematic viscosity.
In order for Fs to be the s-point velocity distribution, there

are some conditions to be obeyed, as follows.
Reduction condition:

� Fs+1�v1, . . . ,vs+1,r1, . . . ,rs+1,t�dvs+1

= Fs�v1, . . . ,vs,r1, . . . ,rs,t� . �2�

Needless to say, the right-hand side has no argument of rs+1
by definition of the joint PDF Fs. When s=0, the right-hand
side is unity by definition. This is nothing but the normaliza-
tion condition of the one-point PDF.

Coincidence condition:

� Fs+1�v1, . . . ,vs+1,r1, . . . ,rs+1,t���rs − rs+1�drs+1

= Fs�v1, . . . ,vs,r1, . . . ,rs,t���vs − vs+1� . �3�

Separation condition: When some points are very far
apart from others, the distribution functions for them become
independent of each other. If s points are apart this way, we
must have

Fs�v1, . . . ,vs,r1, . . . ,rs,t� = F1�v1,r1,t� ¯ F1�vs,rs,t� .

�4�

Divergence condition: Since we treat an incompressible
flow, the average velocity is divergence-free at any point,

�

�ri
·� viFs�v1, . . . ,vs,r1, . . . ,rs,t�dvi = 0 �5�

for 1� i�s.
So far, approximative treatments of decaying homoge-

neous isotropic turbulence based on this Monin-Lundgren
hierarchy were executed by Ulinich and Lyubimov �17�, Tat-
sumi and Yoshimura �18�, and Hosokawa �19�. All these
works predict Gaussian forms of F1�v1 , t� �which must be
independent of r1 because of homogeneity� and energy decay
laws with some power indices. A much simpler method is
reported here.

For s=1, Eq. �1� becomes

�F1

�t
= − v1 ·

�F1

�r1
+

�

�v1
· � 1

4�

�

�r1
� � 1

	r1 − r2	

v2 ·

�

�r2
�2

� F2dv2dr2 − lim
r2→r1

�
 �

�r2
·

�

�r2
� � v2F2dv2� . �6�

If the turbulence is homogeneous, F1 must be independent of
r1. Therefore the first term on the right-hand side of Eq. �6�
vanishes. On the other hand, F2 should not depend on two
positions separately but only on the difference: r= 	r	= 	r2
−r1	 because of homogeneity and isotropy. Then, the double
integral inside the curly brackets cannot depend on r1, so that
the gradient operation with respect to r1 makes the whole
term vanish. Thus the first equation of the hierarchy �1� is
simply reduced to

�F1�v1,t�
�t

= − lim
r2→r1

�
 �

�r2
·

�

�r2
� �

�v1
·� v2F2�v1,v2,r,t�dv2.

�7�

III. THE FORM OF F2 IN THE VISCOUS
RANGE OF r

Let us notice here that the knowledge of the F2 on the
right-hand side of Eq. �7� which is necessary to solve this is
only how it behaves in the viscous range of r around r=0, as
is obvious from the limit operator restricting r2. We now
determine the proper �for isotropic turbulence� local form of
F2 compatible with the coincidence condition.

First, we start from the assumption that F2 can be ex-
pressed as g+��v2+v1� /2,r , t�g−�v2−v1 ,r , t� for very small r.
This means that the velocity difference and sum are statisti-
cally independent of each other there. Then, the coincidence
condition �3� for s=1:

lim
r2→r1

F2 = F1��v2 − v1� , �8�

requires g+��v2+v1� /2,0 , t�=F1��v2+v1� /2, t� and g−�v2
−v1 ,0 , t�=��v2−v1�. Therefore for r slightly away from zero
it is natural to add the linear terms in the Taylor expansion
around r=0 to these functions, only if they are analytic in r.
But such a term cannot exist for g+ since F1 is independent
of r �by homogeneity�, nor for g− because the delta function
is singular. However, as for g− we can consider the possibil-
ity of using an approximate expression of the delta function
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with a parameter n which is going to infinity: �n�v2−v1� as a
g−�v2−v1 ,1 /n , t� �see Ref. �20��. For our three-dimensional
case, we define

�1/x�v2x − v1x��1/y�v2y − v1z��1/z�v2z − v1z�  �1/r�v2 − v1� ,

where, of course, r= �x ,y ,z�. Among some candidates for
�1/r, we have to choose the most suitable one, as follows.

It is necessary that all the three component functions of
�1/r are well-behaved and analytic in r�0, and further it is
essential that they have the definite variances which are in
accord with Kolmogorov’s deduction �21� in the viscous
range of r in isotropic turbulence; that is, in our three-
dimensional frame of velocity space, expressed as

��v2x − v1x�2� = 	1
2x2 + 	2

2y2 + 	2
2z2  Vx,

��v2y − v1y�2� = 	2
2x2 + 	1

2y2 + 	2
2z2  Vy ,

��v2z − v1z�2� = 	2
2x2 + 	2

2y2 + 	1
2z2  Vz, �9�

with 	1
2= 


15� , and 	2
2= 2


15� �See also �22��. Here 

�t� is the
�time-dependent� average energy dissipation rate per unit
mass in decaying homogeneous isotropic turbulence and an
angular bracket means the ensemble average. To understand
Eq. �9�, just recall that the x component of velocity differ-
ence is longitudinal to the x axis, but transverse to the y and
z axes, and the like. �Then, for example, if r2−r1= �x ,0 ,0�,
we have the right answer: ��v2x−v1x�2�=	1

2x2, ��v2y −v1y�2�
=	2

2x2, ��v2z−v1z�2�=	2
2x2.� Obviously, the well-behaved and

analytic form of �1/r�v2−v1� which satisfies Eq. �9� must be
a three-dimensional (normalized) Gaussian function pre-
cisely with these variances, then each component of which is

1
�2�Vx

exp�−
�v2x − v1x�2

2Vx
�

and the like. Accordingly, it is reasonable to redefine
�1/r�v2−v1� precisely as

�1/�2Vx
�v2x − v1x��1/�2Vy

�v2y − v1z��1/�2Vz
�v2z − v1z�

 �1/r�v2 − v1� .

Thus we have no choice but to express the F2 for the viscous
range of r in Eq. �7� by

F2 = F1
v2 + v1

2
,t��1/r�v2 − v1� . �10�

Indeed, this form behaves well for r�0 as it should in the
viscous range and it exactly satisfies the coincidence condi-
tion in the limit r=0; only when �1/r�v2−v1�=��v2−v1�.
�Note in addition that when we put u+= �v2+v1� /2 and u−
=v2−v1, the Jacobian caused by this change of variables is
just unity.� After all, we may say that this form for very small
r is universal for the locally isotropic turbulence �treated by
Kolmogorov�, because all possible non-Gaussian deflections
which may appear in any higher-order than the second-order
moment of �v2−v1� should be negligible for r near zero.
�Imagine the Gram-Charlier series associated with the
Gaussian function �1/r�v2−v1� now determined.�

Here we Taylor-expand F1 in Eq. �10� around v=v1 as

F1�v1,t� +
�v2 − v1�

2
·

�

�v1
F1�v1,t� ,

neglecting the higher-order terms. Then, we find that the first
term with F1�v1 , t� when inserted in the integral of Eq. �7� is
integrated to become just v1F1�v1 , t�, which should vanish in
Eq. �7� since it is independent of r2. The second term with
the derivative of F1�v1 , t� times �v2−v1� decisively contrib-
utes to the integration in cooperation with v2 �=�v2−v1�+v1�
and �1/r�v2−v1�, eventually to bring forth the form

�F1�v1,t�
�t

= − lim
r→�

�
 �

�r
·

�

�r
� �

i=x,y,z
Vi

�

�v1i

�

�v1i
F1�v1,t�/2

= − ��2	1 + 4	2�
�

�v1
·

�

�v1
F1�v1,t�/2

= −

�t�

3

�

�v1
·

�

�v1
F1�v1,t� , �11�

using relations �9� carefully. Note that this holds for any
value of ��0 �but small enough to keep turbulence�. This
equation seems to be a simple closed equation for F1�v1 , t�
but it might not be the case. 
�t� ��0� could be essentially
interrelated with higher-order than the first equations. There-
fore it is generally unknown at this stage �until it is fixed in
Eq. �19��.

We can justify Eq. �11� from another angle of view. Let us
multiply �dv1v1

2 /2 to both sides of the equation. Then we
have

− 
�t� = −

�t�

3
� v1

2/2
�

�v1
·

�

�v1
F1�v1,t�dv1

= −

�t�

3
4�� v1

4

2

�

v1
2�v1

v1
2 �

�v1
F1�v1,t�dv1. �12�

It is easy to prove that both sides are identical for any 
�t�,
since there must be the normalization condition:

� F1�v1,t�dv1 = 1. �13�

This important fact insures self-consistency of Eq. �11� that
has led to this. A better theory on our problem to replace Eq.
�11�, if any, should not be free from this consistency test.

Ulinich and Lyubimov �17� obtained Eq. �11� by their
unique approach to the Monin-Lundgren hierarchy using the
Re−1/4 expansion �Re: Reynolds number�, as the first ap-
proximation, together with two other equations which lead to
solving for 
�t� simultaneously. Tatsumi and Yoshimura �18�
obtained Eq. �11� by using their cross-independence hypoth-
esis that boldly assumes independence from each other of the
PDFs of velocity difference and sum between two arbitrary
points in turbulence, and determined a form of 
�t� by a
method of similarity solution. But this hypothesis embraces a
serious defect when applied to the inertial range of r �see
�19,23��.

We note that there have, so far, been two other model
equations dealing with the one-point velocity statistics which
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aim at wider application to various turbulent flows. First,
Lundgren �24� reformed the first Eq. �6� quite drastically, by
adopting for the random pressure term the concept of relax-
ation of the PDF of random velocity to the locally isotropic
Gaussian form during relaxation time �by analogy with the
Bhatnager, Gross, and Krook model in gas kinetics �25�� and
for the random viscous term an intuitive form which is pro-
portional to the difference of random velocity and its local
mean, in the way that dissipation rate and kinetic energy are
involved in the two terms. Therefore this is nothing but a
model, perhaps useful for some flows he took up in his paper,
but it is no miracle that his model does not necessarily lead
us to Eq. �11� for homogeneous isotropic turbulence; curi-
ously his solution for this case is not guaranteed to be Gauss-
ian unless initially it is so, though with an arbitrarily decay-
ing variance.

Second, Pope’s model equation for the one-point velocity
�26� is different from Lundgren’s only at one point that both
the random pressure term and the random viscous term have
been replaced by the terms to be brought from a Langevin
dynamics:

dvi = �C0
dWi + Gij�v j − �Uj��dt ,

where C0 is called Kolmogorov’s constant in his paper, dWi
is an isotropic Wiener process, Gij is a tensor function of
local mean quantities, and repetitive suffixes obey the sum-
mation convention. Here, the Markovian random force with
dWi causes the random pressure in contrast to Lundgren’s
idea and brings forth the term with a second-order derivative

of the PDF of velocity, just as 1
2C0


�2F1

�vi�vi
, into the equation

for F1 so that it becomes a typical Fokker-Planck equation.
The next friction-type force with Gij adds the random vis-
cous term due to a similar idea to that of Lundgren into the
equation for F1, but Gij is far more complex depending on
types of flow; but, in order to be physically meaningful, this
tensor would be negative definite. Thus it is clear that Pope’s
model equation �even for homogeneous isotropic case� is
fundamentally distinct from Eq. �11�. The former is obvi-
ously a Fokker-Planck equation which is usually ensured to
have a final steady solution, while the latter is not such be-
cause it does not have a positive-definite diffusion term. The
steady Gaussian solution we can expect from Pope’s equa-
tion for the homogeneous isotropic case is, only if we as-
sume that Gij =−��ij, F1�exp�− �

C0
vivi�. Apparently, this ex-
presses a stationary turbulence sustained by �suppositional�
energy injected by the Markovian random force, but not a
decaying turbulence. This situation would be changed by
giving 
 time-dependence in a self-consistent way somehow.

IV. GAUSSIAN PDF OF THE ONE-POINT VELOCITY

By assuming that 
�t� is known and transforming t into
�0 as

 = − �t


�t�dt , �14�

Eq. �11� becomes formally a simple three-dimensional diffu-
sion equation on the  axis:

�F1

�
=

1

3

�

�v1
·

�

�v1
F1. �15�

Therefore F1�v1 ,� can be solved as

F1�v1,� =
1

�2� · 2/3�3/2 exp�−
v1

2

4/3� . �16�

Thus the PDF of velocity at one point should be Gaussian
and isotropic in general, whatever the functional form of �t�
��0� may be. Obviously �t� means kinetic energy per unit
mass, and it must decay with t, as Eq. �14� indicates: d /dt
=−
�t�. And at the same time the PDF of velocity tends to
concentrate to the delta function, ��v1�, at =0, so that it is
physically natural to assign the lower limit of the integral in
Eq. �14� as t=�.

Although it is out of scope here to search all the forms of
�t�, the present situation around this issue is as follows.
Ulinich and Lyubimov �17� gave

�t�/�0� = �1 + t/t0�−k �17�

in their approximation �k: const�. Tatsumi and Yoshimura
�18� obtained �t�� t−1. Since the theoretical predictions of
�t�� t−10/7 �Kolmogorov �21�� and �t�� t−6/5 �Saffman
�27��, various values of the power law index of energy decay
in homogeneous isotropic turbulence have been reported
from experimental and theoretical sides, but the problem is
still open �28,29�. The power index seems to be related with
the energy spectrum or how the turbulence was created in the
past.

V. TWO-PARAMETER FAMILY OF EXACT
SPECIAL SOLUTIONS FOR �(t)

Let us introduce the similarity variable w=v1t�, and write
F1�v1 , t�= t3���w�. Then we have in place of Eq. �11�

3�� + �w ·
��

�w
= −


�t�
3

t2�+1 �

�w
·
��

�w
. �18�

Since t and w are independent of each other, in order for this
equation to be meaningful we should have


�t�
3

t2�+1  � = const��0� so that 
�t� = 3�/t2�+1.

�19�

Thereupon it is easy to obtain the normalized solution for �:

��w� =
1

�2��/��3/2 exp
−
�w · w

2�
� �20�

where ��0 is necessary and, from relations �14� and �19�,

�t� =
3�

2�
� t2�, �21�
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which satisfies the condition: ���=0. Needless to say, this
identifies the power law of energy decay and the parameter
2� indicates the power law index, while � is determined by
� and the kinetic energy per unit mass at a certain specific
time. From solution �20�, we have a two-parameter family of
exact solutions for the one-point velocity distribution as

F1�v1,t� =
t3�

�2��/��3/2 exp
−
�t2�v1 · v1

2�
� . �22�

�This solution is based on the similarity method starting from
Eq. �18�, but there might be other solutions not belonging to
this family.�

The main character of the turbulence obtained here is as
follows. Solution �22� gives the root mean square of one
component of velocity as

u�t�  ��/��1/2t−�; �23�

a large-scale length is defined as

L�t�  u�t�3/
�t� =
�1/2

3�3/2 t−�+1; �24�

the Kolmogorov length is

��t� = ��3/
�t��1/4 = 
 �3

3�
�1/4

t�2�+1�/4; �25�

and a large-scale Reynolds number can be defined as

Re�t�  u�t�L�t�/� =
�

3��2 t−2�+1 = 
L�t�
��t�

�4/3
. �26�

The Taylor microscale defined as �=L�15 /Re is

��t� =�5�

�
t1/2. �27�

The time dependence of only this quantity is, notably, irre-
spective of �.

The case of �=1 /2 in the family is the same as what was
obtained by Tatsumi and Yoshimura �18�. But this turbulence
has a hardly acceptable nature that the Reynolds number �26�
is time-invariant. Obviously, the cases with ��1 /2 will bet-
ter explain the mostly observed aspects of real decaying ho-
mogeneous isotropic turbulence �28�. What can be said from
the present consideration is that solutions are not unique but
diversified in the two-parameter family. Such a diversity
must originate in a mechanism by which turbulence is cre-
ated. Exactly speaking, the two parameters determine the in-
tensity of turbulence represented by u�t� �23� as well as the
large-scale length L�t� �24� together with their time depen-
dence in a unique sense. A two-parameter family of solutions
were previously inferred by the author in a crude way �19�.
Interestingly, this family �with parameters �0 and a� are in
complete accord with the present family when we put �0
=� and a= �1+2�� /4.

VI. CONCLUSION

We have truncated the Monin-Lundgren hierachy for
many-point PDFs of velocity in decaying homogeneous iso-

tropic turbulence to obtain the closed-form first equation for
F1�v1 , t�, by introducing the reasonable Gaussian function
�1/r�v2−v1� to simplify the form of F2 for the viscous range
of r, and found a two-parameter family of exact solutions for
this equation, which are all Gaussian. Then, the possibility to
find subGaussian solutions of Eq. �11� or originally Eq. �7�
would be rare. Therefore the Gaussianity would still remain
as a typical candidate to characterize the PDF of velocity in
decaying homogeneous isotropic turbulence, from a theoret-
ical viewpoint apart from unavoidable experimental or nu-
merical error. In order to know the structural knowledge of
turbulence such as autocorrelations of velocity, energy spec-
trum, and the PDF of velocity increment, however, it is nec-
essary to solve the second equation of the Monin-Lundgren
hierarchy even approximately �19�. This is a significant task
mostly left for the future. It may be noticed that the present
trick using �1/r would be useful for the viscous terms at any
stage of the hierarchy �1�, which involves Fs+1, to be simpli-
fied like − 
�t�

3
�

�v j
· �

�v j
Fs�. . . ,v j , . . . � �with a known 
�t� as Eq.

�19� if the turbulence belongs to the two-parameter family;
therefore a direct relationship of the two parameters with the
fine structure of isotropic turbulence is expected to be found
by solving the second equation for F2�.

Finally, it would be worth noting that for two extreme
cases of isotropic turbulence with Reynolds number=� and
0, there are exact solutions of the Hopf �characteristic func-
tional� equation which insure the Gaussianity of velocity
field. The first one is the inviscid steady Gaussian functional
with the white energy spectrum found by Hopf himself �3�,
although this solution is unrealistic. The second one is a
Gaussian functional corresponding to the final period of de-
cay, when we deal with the linearized Navier-Stokes equa-
tion: �u /�t=��u ��: Laplacian�. See the Appendix below
for the details of this case.

APPENDIX

By definition, the Hopf functional is

��y�r�,t� =� exp�i� dry�r� · Tt−t0u�r��P�u�r�,t0��u ,

�A1�

where Tt−t0 is the evolutional operator from time t0 to t, that
may be replaced by the linear operator e��t−t0�� for this case.
P�u�r� , t0��u denotes the differential probability of u�r� at
t= t0, and then the outside integral means a functional inte-
gration �30,31� over the function space of u�r�. Equation
�A1� is equivalent to the Hopf equation, since it is derived by
time differentiation of Eq. �A1�.

On the other hand, we have

P�u�r�,t� =� exp�− i� dry�r� · u�r����y�r�,t��y

�A2�

which is a functional inverse Fourier transform. If Eqs. �A1�
and �A2� are combined,
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��y�r�,t� =� � exp�i� dr�y�r�Tt−t0 − y��r�� · u�r��
���y��r�,t0��y��u �A3�

is obtained.
Let us assume that the initial Hopf functional is homoge-

neous isotropic and Gaussian as

��y��r�,t0� = exp�−� � drdr�y��r�y��r��:Q�r − r��� ,

�A4�

where Q�r−r�� denotes the correlation tensor of velocity
field. Since the functional integration with respect to u in Eq.
�A3� gives rise to a delta functional �30�, ��y�r�Tt−t0 −y��r��,
insertion of Eq. �A4� into Eq. �A3� leads to

��y�r�,t�

= exp�−� � drdr�y�r�y�r��:e��t−t0���+���Q�r − r��� ,

�A5�

where the primed Laplacian operates to r�.
Although this result is very symbolic, it is apparent that

the Gaussianity of velocity field is kept long until energy
totally decays. When treated in the wave-number space
rather than the physical space, everything would be easier to
grasp; we shall see the energy spectrum in place of Q�r
−r��. Anyway it is to be noted that the Gaussianity comes not
from the central limit theorem but the initial condition for the
Hopf functional in this case with a linear dynamics, in con-
trast to Batchelor’s viewpoint about this problem �10�. The
reason to choose the Gaussian form initially may be given by
the �information� entropy-functional maximum principle un-
der the condition of a given Q�r−r�� �31�.
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